Ensemble Clustering using Semidefinite Programming
نویسندگان
چکیده
We consider the ensemble clustering problem where the task is to 'aggregate' multiple clustering solutions into a single consolidated clustering that maximizes the shared information among given clustering solutions. We obtain several new results for this problem. First, we note that the notion of agreement under such circumstances can be better captured using an agreement measure based on a 2D string encoding rather than voting strategy based methods proposed in literature. Using this generalization, we first derive a nonlinear optimization model to maximize the new agreement measure. We then show that our optimization problem can be transformed into a strict 0-1 Semidefinite Program (SDP) via novel convexification techniques which can subsequently be relaxed to a polynomial time solvable SDP. Our experiments indicate improvements not only in terms of the proposed agreement measure but also the existing agreement measures based on voting strategies. We discuss evaluations on clustering and image segmentation databases.
منابع مشابه
A Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملThe ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کاملAdvanced Optimization Laboratory Title: Approximating K-means-type clustering via semidefinite programming
One of the fundamental clustering problems is to assign n points into k clusters based on the minimal sum-of-squares(MSSC), which is known to be NP-hard. In this paper, by using matrix arguments, we first model MSSC as a so-called 0-1 semidefinite programming (SDP). We show that our 0-1 SDP model provides an unified framework for several clustering approaches such as normalized k-cut and spectr...
متن کاملRobustness of SDPs for Partial Recovery of Clustering Subgaussian Mixtures
In this paper, we examine the robustness of a relax-and-round k-means clustering procedure, a method for clustering subgaussian mixtures using semidefinite programming first introduced in [MVW16]. We are interested in the robustness of the algorithm when there is an adversarial corruption of N points each through distance at most R0. We show that under such corruption this specific algorithm we...
متن کاملFast Low-Rank Semidefinite Programming for Embedding and Clustering
Many non-convex problems in machine learning such as embedding and clustering have been solved using convex semidefinite relaxations. These semidefinite programs (SDPs) are expensive to solve and are hence limited to run on very small data sets. In this paper we show how we can improve the quality and speed of solving a number of these problems by casting them as low-rank SDPs and then directly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advances in neural information processing systems
دوره 20 شماره
صفحات -
تاریخ انتشار 2007